Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
World J Gastroenterol ; 30(7): 714-727, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38515951

RESUMO

BACKGROUND: Pancreatic cancer is a leading cause of cancer-related deaths. Increased activity of the epidermal growth factor receptor (EGFR) is often observed in pancreatic cancer, and the small molecule EGFR inhibitor erlotinib has been approved for pancreatic cancer therapy by the food and drug administration. Nevertheless, erlotinib alone is ineffective and should be combined with other drugs to improve therapeutic outcomes. We previously showed that certain receptor tyrosine kinase inhibitors can increase mitochondrial membrane potential (Δψm), facilitate tumor cell uptake of Δψm-sensitive agents, disrupt mitochondrial homeostasis, and subsequently trigger tumor cell death. Erlotinib has not been tested for this effect. AIM: To determine whether erlotinib can elevate Δψm and increase tumor cell uptake of Δψm-sensitive agents, subsequently triggering tumor cell death. METHODS: Δψm-sensitive fluorescent dye was used to determine how erlotinib affects Δψm in pancreatic adenocarcinoma (PDAC) cell lines. The viability of conventional and patient-derived primary PDAC cell lines in 2D- and 3D cultures was measured after treating cells sequentially with erlotinib and mitochondria-targeted ubiquinone (MitoQ), a Δψm-sensitive MitoQ. The synergy between erlotinib and MitoQ was then analyzed using SynergyFinder 2.0. The preclinical efficacy of the two-drug combination was determined using immune-compromised nude mice bearing PDAC cell line xenografts. RESULTS: Erlotinib elevated Δψm in PDAC cells, facilitating tumor cell uptake and mitochondrial enrichment of Δψm-sensitive agents. MitoQ triggered caspase-dependent apoptosis in PDAC cells in culture if used at high doses, while erlotinib pretreatment potentiated low doses of MitoQ. SynergyFinder suggested that these drugs synergistically induced tumor cell lethality. Consistent with in vitro data, erlotinib and MitoQ combination suppressed human PDAC cell line xenografts in mice more effectively than single treatments of each agent. CONCLUSION: Our findings suggest that a combination of erlotinib and MitoQ has the potential to suppress pancreatic tumor cell viability effectively.


Assuntos
Adenocarcinoma , Neoplasias Pancreáticas , Humanos , Animais , Camundongos , Cloridrato de Erlotinib/farmacologia , Cloridrato de Erlotinib/uso terapêutico , Neoplasias Pancreáticas/patologia , Sobrevivência Celular , Adenocarcinoma/patologia , Camundongos Nus , Ubiquinona/farmacologia , Ubiquinona/uso terapêutico , Quinazolinas , Linhagem Celular Tumoral , Receptores ErbB , Mitocôndrias/patologia , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Proliferação de Células
2.
Nat Commun ; 13(1): 6054, 2022 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-36229431

RESUMO

Oral-facial-digital (OFD) syndromes are a heterogeneous group of congenital disorders characterized by malformations of the face and oral cavity, and digit anomalies. Mutations within 12 cilia-related genes have been identified that cause several types of OFD, suggesting that OFDs constitute a subgroup of developmental ciliopathies. Through homozygosity mapping and exome sequencing of two families with variable OFD type 2, we identified distinct germline variants in INTS13, a subunit of the Integrator complex. This multiprotein complex associates with RNA Polymerase II and cleaves nascent RNA to modulate gene expression. We determined that INTS13 utilizes its C-terminus to bind the Integrator cleavage module, which is disrupted by the identified germline variants p.S652L and p.K668Nfs*9. Depletion of INTS13 disrupts ciliogenesis in human cultured cells and causes dysregulation of a broad collection of ciliary genes. Accordingly, its knockdown in Xenopus embryos leads to motile cilia anomalies. Altogether, we show that mutations in INTS13 cause an autosomal recessive ciliopathy, which reveals key interactions between components of the Integrator complex.


Assuntos
Proteínas de Transporte/genética , Proteínas de Ciclo Celular/genética , Ciliopatias , Síndromes Orofaciodigitais , Cílios/genética , Ciliopatias/genética , Homozigoto , Humanos , Mutação , Síndromes Orofaciodigitais/genética , RNA , RNA Polimerase II/genética
3.
Int J Mol Sci ; 20(23)2019 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-31756921

RESUMO

It is well established that extracellular proteins that negatively regulate T cell function, such as Cytotoxic T-Lymphocyte-Associated protein 4 (CTLA-4) and Programmed Cell Death protein 1 (PD-1), can be effectively targeted to enhance cancer immunotherapies and Chimeric Antigen Receptor T cells (CAR-T cells). Intracellular proteins that inhibit T cell receptor (TCR) signal transduction, though less well studied, are also potentially useful therapeutic targets to enhance T cell activity against tumor. Four major classes of enzymes that attenuate TCR signaling include E3 ubiquitin kinases such as the Casitas B-lineage lymphoma proteins (Cbl-b and c-Cbl), and Itchy (Itch), inhibitory tyrosine phosphatases, such as Src homology region 2 domain-containing phosphatases (SHP-1 and SHP-2), inhibitory protein kinases, such as C-terminal Src kinase (Csk), and inhibitory lipid kinases such as Src homology 2 (SH2) domain-containing inositol polyphosphate 5-phosphatase (SHIP) and Diacylglycerol kinases (DGKs). This review describes the mechanism of action of eighteen intracellular inhibitory regulatory proteins in T cells within these four classes, and assesses their potential value as clinical targets to enhance the anti-tumor activity of endogenous T cells and CAR-T cells.


Assuntos
Proteínas Inibidoras de Quinase Dependente de Ciclina/metabolismo , Imunoterapia Adotiva/métodos , Neoplasias/terapia , Linfócitos T/imunologia , Animais , Humanos
4.
G3 (Bethesda) ; 9(8): 2609-2622, 2019 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-31227525

RESUMO

Cell competition is the elimination of one viable population of cells (the losers) by a neighboring fitter population (the winners) and was discovered by studies in the Drosophila melanogaster wing imaginal disc. Supercompetition is a process in which cells with elevated JAK/STAT signaling or increased Myc become winners and outcompete wild-type neighbors. To identify the genes that are differentially regulated in STAT supercompetitors, we purified these cells from Drosophila wing imaginal discs and performed next-generation sequencing. Their transcriptome was compared to those of control wing disc cells and Myc supercompetitors. Bioinformatics revealed that STAT and Myc supercompetitors have distinct transcriptomes with only 41 common differentially regulated genes. Furthermore, STAT supercompetitors have elevated reactive oxygen species, an anti-oxidant response and increased ecdysone signaling. Using a combination of methods, we validated 13 differentially expressed genes. These data sets will be useful resources to the community.


Assuntos
Drosophila/genética , Drosophila/metabolismo , Ecdisona/metabolismo , Estresse Oxidativo , Fatores de Transcrição STAT/metabolismo , Transdução de Sinais , Animais , Sítios de Ligação , Biologia Computacional/métodos , Genoma , Genômica/métodos , Sequenciamento de Nucleotídeos em Larga Escala , Janus Quinases/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Ligação Proteica , Espécies Reativas de Oxigênio/metabolismo
6.
Biol Open ; 7(7)2018 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-29945873

RESUMO

Cdc14 is an evolutionarily conserved serine/threonine phosphatase. Originally identified in Saccharomyces cerevisiae as a cell cycle regulator, its role in other eukaryotic organisms remains unclear. In Drosophila melanogaster, Cdc14 is encoded by a single gene, thus facilitating its study. We found that Cdc14 expression is highest in the testis of adult flies and that cdc14 null flies are viable. cdc14 null female and male flies do not display altered fertility. cdc14 null males, however, exhibit decreased sperm competitiveness. Previous studies have shown that Cdc14 plays a role in ciliogenesis during zebrafish development. In Drosophila, sensory neurons are ciliated. We found that the Drosophila cdc14 null mutants have defects in chemosensation and mechanosensation as indicated by decreased avoidance of repellant substances and decreased response to touch. In addition, we show that cdc14 null mutants have defects in lipid metabolism and resistance to starvation. These studies highlight the diversity of Cdc14 function in eukaryotes despite its structural conservation.

7.
J Biol Chem ; 292(3): 1068-1080, 2017 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-27920203

RESUMO

The triphosphohydrolase SAMHD1 (sterile α motif and histidine-aspartate domain-containing protein 1) restricts HIV-1 replication in nondividing myeloid cells by depleting the dNTP pool, preventing reverse transcription. SAMHD1 is also reported to have ribonuclease activity that degrades the virus genomic RNA. Human SAMHD1 is regulated by phosphorylation of its carboxyl terminus at Thr-592, which abrogates its antiviral function yet has only a small effect on its phosphohydrolase activity. In the mouse, SAMHD1 is expressed as two isoforms (ISF1 and ISF2) that differ at the carboxyl terminus due to alternative splicing of the last coding exon. In this study we characterized the biochemical and antiviral properties of the two mouse isoforms of SAMHD1. Both are antiviral in nondividing cells. Mass spectrometry analysis showed that SAMHD1 is phosphorylated at several amino acid residues, one of which (Thr-634) is homologous to Thr-592. Phosphomimetic mutation at Thr-634 of ISF1 ablates its antiviral activity yet has little effect on phosphohydrolase activity in vitro dGTP caused ISF1 to tetramerize, activating its catalytic activity. In contrast, ISF2, which lacks the phosphorylation site, was significantly more active, tetramerized, and was active without added dGTP. Neither isoform nor human SAMHD1 had detectable RNase activity in vitro or affected HIV-1 genomic RNA stability in newly infected cells. These data support a model in which SAMHD1 catalytic activity is regulated through tetramer stabilization by the carboxyl-terminal tail, phosphorylation destabilizing the complexes and inactivating the enzyme. ISF2 may serve to reduce the dNTP pool to very low levels as a means of restricting virus replication.


Assuntos
Infecções por HIV/enzimologia , HIV-1/fisiologia , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Multimerização Proteica , RNA Viral/metabolismo , Replicação Viral/fisiologia , Substituição de Aminoácidos , Animais , Infecções por HIV/genética , Humanos , Isoenzimas/química , Isoenzimas/genética , Isoenzimas/metabolismo , Camundongos , Modelos Moleculares , Proteínas Monoméricas de Ligação ao GTP/química , Proteínas Monoméricas de Ligação ao GTP/genética , Mutação de Sentido Incorreto , Fosforilação , RNA Viral/genética , Proteína 1 com Domínio SAM e Domínio HD , Células U937
8.
J Vis Exp ; (83): e51058, 2014 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-24473184

RESUMO

Drosophila melanogaster is a powerful model system that has been widely used to elucidate a variety of biological processes. For example, studies of both the female and male germ lines of Drosophila have contributed greatly to the current understanding of meiosis as well as stem cell biology. Excellent protocols are available in the literature for the isolation and imaging of Drosophila ovaries and testes(3-12). Herein, methods for the dissection and preparation of Drosophila testes for microscopic analysis are described with an accompanying video demonstration. A protocol for isolating testes from the abdomen of adult males and preparing slides of live tissue for analysis by phase-contrast microscopy as well as a protocol for fixing and immunostaining testes for analysis by fluorescence microscopy are presented. These techniques can be applied in the characterization of Drosophila mutants that exhibit defects in spermatogenesis as well as in the visualization of subcellular localizations of proteins.


Assuntos
Drosophila melanogaster/anatomia & histologia , Testículo/anatomia & histologia , Animais , Drosophila melanogaster/citologia , Masculino , Microscopia de Fluorescência/métodos , Testículo/citologia
9.
Dev Biol ; 386(1): 42-52, 2014 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-24333177

RESUMO

We previously showed that asunder (asun) is a critical regulator of dynein localization during Drosophila spermatogenesis. Because the expression of asun is much higher in Drosophila ovaries and early embryos than in testes, we herein sought to determine whether ASUN plays roles in oogenesis and/or embryogenesis. We characterized the female germline phenotypes of flies homozygous for a null allele of asun (asun(d93)). We find that asun(d93) females lay very few eggs and contain smaller ovaries with a highly disorganized arrangement of ovarioles in comparison to wild-type females. asun(d93) ovaries also contain a significant number of egg chambers with structural defects. A majority of the eggs laid by asun(d93) females are ventralized to varying degrees, from mild to severe; this ventralization phenotype may be secondary to defective localization of gurken transcripts, a dynein-regulated step, within asun(d93) oocytes. We find that dynein localization is aberrant in asun(d93) oocytes, indicating that ASUN is required for this process in both male and female germ cells. In addition to the loss of gurken mRNA localization, asun(d93) ovaries exhibit defects in other dynein-mediated processes such as migration of nurse cell centrosomes into the oocyte during the early mitotic divisions, maintenance of the oocyte nucleus in the anterior-dorsal region of the oocyte in late-stage egg chambers, and coupling between the oocyte nucleus and centrosomes. Taken together, our data indicate that asun is a critical regulator of dynein localization and dynein-mediated processes during Drosophila oogenesis.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila/embriologia , Regulação da Expressão Gênica no Desenvolvimento , Oogênese/genética , Alelos , Animais , Padronização Corporal , Linhagem da Célula , Núcleo Celular/metabolismo , Centrossomo/metabolismo , Dineínas/metabolismo , Feminino , Genótipo , Homozigoto , Hibridização In Situ , Masculino , Oócitos/metabolismo , Ovário/metabolismo , Fenótipo , Fatores Sexuais , Testículo/metabolismo , Transgenes
10.
Mol Biol Cell ; 24(18): 2954-65, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23904267

RESUMO

We previously reported that Asunder (ASUN) is essential for recruitment of dynein motors to the nuclear envelope (NE) and nucleus-centrosome coupling at the onset of cell division in cultured human cells and Drosophila spermatocytes, although the mechanisms underlying this regulation remain unknown. We also identified ASUN as a functional component of Integrator (INT), a multisubunit complex required for 3'-end processing of small nuclear RNAs. We now provide evidence that ASUN acts in the nucleus in concert with other INT components to mediate recruitment of dynein to the NE. Knockdown of other individual INT subunits in HeLa cells recapitulates the loss of perinuclear dynein in ASUN-small interfering RNA cells. Forced localization of ASUN to the cytoplasm via mutation of its nuclear localization sequence blocks its capacity to restore perinuclear dynein in both cultured human cells lacking ASUN and Drosophila asun spermatocytes. In addition, the levels of several INT subunits are reduced at G2/M when dynein is recruited to the NE, suggesting that INT does not directly mediate this step. Taken together, our data support a model in which a nuclear INT complex promotes recruitment of cytoplasmic dynein to the NE, possibly via a mechanism involving RNA processing.


Assuntos
Proteínas de Transporte/metabolismo , Proteínas de Ciclo Celular/metabolismo , Núcleo Celular/metabolismo , Dineínas do Citoplasma/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Complexos Multiproteicos/metabolismo , Sequência de Aminoácidos , Animais , Proteínas de Transporte/química , Proteínas de Ciclo Celular/química , Divisão Celular , Proteínas de Drosophila/química , Drosophila melanogaster/citologia , Fase G2 , Células HeLa , Humanos , Masculino , Dados de Sequência Molecular , Membrana Nuclear/metabolismo , Sinais de Localização Nuclear/metabolismo , Subunidades Proteicas/metabolismo , Transporte Proteico , RNA Interferente Pequeno/metabolismo , Espermatócitos/citologia , Espermatócitos/metabolismo , Frações Subcelulares/metabolismo
11.
Mol Biol Cell ; 23(24): 4713-24, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23097494

RESUMO

Recruitment of dynein motors to the nuclear surface is an essential step for nucleus-centrosome coupling in prophase. In cultured human cells, this dynein pool is anchored to nuclear pore complexes through RanBP2-Bicaudal D2 (BICD2) and Nup133- centromere protein F (CENP-F) networks. We previously reported that the asunder (asun) gene is required in Drosophila spermatocytes for perinuclear dynein localization and nucleus-centrosome coupling at G2/M of male meiosis. We show here that male germline expression of mammalian Asunder (ASUN) protein rescues asun flies, demonstrating evolutionary conservation of function. In cultured human cells, we find that ASUN down-regulation causes reduction of perinuclear dynein in prophase of mitosis. Additional defects after loss of ASUN include nucleus-centrosome uncoupling, abnormal spindles, and multinucleation. Coimmunoprecipitation and overlapping localization patterns of ASUN and lissencephaly 1 (LIS1), a dynein adaptor, suggest that ASUN interacts with dynein in the cytoplasm via LIS1. Our data indicate that ASUN controls dynein localization via a mechanism distinct from that of either BICD2 or CENP-F. We present a model in which ASUN promotes perinuclear enrichment of dynein at G2/M that facilitates BICD2- and CENP-F-mediated anchoring of dynein to nuclear pore complexes.


Assuntos
Proteínas de Transporte/metabolismo , Núcleo Celular/metabolismo , Centrossomo/metabolismo , Dineínas/metabolismo , Mitose , 1-Alquil-2-acetilglicerofosfocolina Esterase/genética , 1-Alquil-2-acetilglicerofosfocolina Esterase/metabolismo , Animais , Proteínas de Transporte/genética , Proteínas de Ciclo Celular , Linhagem Celular Tumoral , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Dineínas/genética , Feminino , Fase G2 , Teste de Complementação Genética , Células HEK293 , Células HeLa , Humanos , Immunoblotting , Masculino , Camundongos , Proteínas dos Microfilamentos/genética , Proteínas dos Microfilamentos/metabolismo , Microscopia de Fluorescência , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Mutação , Poro Nuclear/metabolismo , Ligação Proteica , Interferência de RNA , Fuso Acromático/metabolismo
12.
Development ; 139(16): 2945-54, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22764052

RESUMO

Dynein, a microtubule motor complex, plays crucial roles in cell-cycle progression in many systems. The LIS1 accessory protein directly binds dynein, although its precise role in regulating dynein remains unclear. Mutation of human LIS1 causes lissencephaly, a developmental brain disorder. To gain insight into the in vivo functions of LIS1, we characterized a male-sterile allele of the Drosophila homolog of human LIS1. We found that centrosomes do not properly detach from the cell cortex at the onset of meiosis in most Lis-1 spermatocytes; centrosomes that do break cortical associations fail to attach to the nucleus. In Lis-1 spermatids, we observed loss of attachments between the nucleus, basal body and mitochondria. The localization pattern of LIS-1 protein throughout Drosophila spermatogenesis mirrors that of dynein. We show that dynein recruitment to the nuclear surface and spindle poles is severely reduced in Lis-1 male germ cells. We propose that Lis-1 spermatogenesis phenotypes are due to loss of dynein regulation, as we observed similar phenotypes in flies null for Tctex-1, a dynein light chain. We have previously identified asunder (asun) as another regulator of dynein localization and centrosome positioning during Drosophila spermatogenesis. We now report that Lis-1 is a strong dominant enhancer of asun and that localization of LIS-1 in male germ cells is ASUN dependent. We found that Drosophila LIS-1 and ASUN colocalize and coimmunoprecipitate from transfected cells, suggesting that they function within a common complex. We present a model in which Lis-1 and asun cooperate to regulate dynein localization and centrosome positioning during Drosophila spermatogenesis.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Proteínas de Drosophila/metabolismo , Dineínas/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Espermatogênese/fisiologia , Animais , Animais Geneticamente Modificados , Proteínas de Ciclo Celular/genética , Centrossomo/metabolismo , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Drosophila melanogaster/crescimento & desenvolvimento , Drosophila melanogaster/metabolismo , Complexo Dinactina , Dineínas/genética , Humanos , Masculino , Proteínas Associadas aos Microtúbulos/genética , Modelos Biológicos , Fenótipo , Espermátides/metabolismo , Espermátides/ultraestrutura , Espermatócitos/metabolismo , Espermatócitos/ultraestrutura , Espermatogênese/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...